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Image Compression via Improved 
Quadtree Decomposition Algorithms 

Eli Shusterman and Meir Feder, Senior Member, IEEE 

Abstract-Quadtree decomposition is a simple technique used 
to obtain an image representation at different resolution levels. 
This representation can be useful for a variety of image processing 
and image compression algorithms. This paper presents a simple 
way to get better compression performances (in MSE sense) via 
quadtree decomposition, by using: 

Near to optimal choice of the threshold for quadtree decom- 
position. 
Bit allocation procedure based on the equations derived from 
rate-distortion theory. 

The rate-distortion performance of the improved algorithm is cal- 
culated for some Gaussian field, and it is examined vie simulation 
over benchmark gray-level images. In both these cases, significant 
improvement in the compression performances is shown. 

I. INTRODUCTION 

UADTREE (QT) decomposition is a simple technique 
for image representation at different resolution levels. 
This representation is successfully used in binary image 

compression algorithms. Recently, QT decomposition has been 
used as a part of image sequence compression algorithms, 
[ 171-[19]. QT decomposition for coding of gray-level images 
is attractive for a number of reasons: 

Relative simplicity compared to other methods (e.g., 
DCT-based coding), which makes it an attractive method 
for applications such as video and HDTV compressions. 
The adaptivity of the decomposition. The decomposition 
divides the image into regions with size depending on 
the activity in the region. The compression performance 
is thus adapted to the various image regions. 
The useful output of the decomposition. The decomposi- 
tion actually results in a kind of image segmentation. This 
segmentation can be used for a variety of different image 
processing applications, e.g., pattern recognition, [ 1 11. 

However, so far, the rate-distortion (R-D) performance of QT 
based compression algorithms for gray-level images has been 
poorer than other popular compression techniques such as 
transform-based compressions (e.g., DCT). 

Little attention has been paid to the study of the threshold 
and the bit allocation influence on the decomposition perfor- 
mance. This paper tries to fulfill the gap. The results of the 
present study suggest two modifications in the original QT 
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decomposition coding algorithm. The suggested modifications 
were analyzed for an autoregressive Gaussian field and tested 
by simulations on real gray-level images. In both cases these 
modifications significantly improved the R-D performance of 
the algorithm with a minor increase in its complexity. The 
simulation results show that a proposed algorithm performs 
better than transform coding or subband coding [22], both 
followed by scalar quantizer. For some images the algorithm 
performance is competitive even with the two mentioned 
coding techniques, followed by vector quantizer. 

The paper is organized as follows: In Section I1 the stan- 
dard QT decomposition algorithm is described. Section I11 
introduces modifications of the standard QT algorithm, which 
improve its performance. This is the main contribution of the 
paper. In Section IV the R-D performance of the improved QT 
decomposition coding algorithm is calculated for an autore- 
gressive Gaussian field. Section V presents simulation results 
for real gray-level images and Section VI concludes this work. 

11. QT DECOMPOSITION 
A natural gray-level image usually can be divided into 

different size regions with a variable amount of details and 
information. Such segmentation of the image is useful for 
efficient coding of image data. QT decomposition is a powerful 
technique which divides the image into 2-D homogeneous (in 
the property of interest) regions, i.e., produces the segmenta- 
tion. 

The decomposition builds a tree. Each tree node has four 
children and it is associated with a uniquely defined region 
of the image. It is obvious that the root is associated with 
the whole image. QT decomposition can be done either by 
top-down or bottom-up procedures. In Fig. 1, both top-down 
and bottom-up QT decomposition procedures are illustrated. 
It is well known, and also demonstrated by this simple 
example, that the bottom-up procedure is superior; therefore 
it is preferred for usage in the suggested algorithm. 

When QT decomposition is used for image compression, 
the resulting tree is coded. The coding procedure includes 
coding of the tree structure information and coding of the leaf 
information. Let assign “1” to the parent node and “0” to the 
leaf. To each leaf a parameter (or parameters) that describes the 
intensity of the corresponding subimage will also be assigned. 
Obviously, the image pixels are always leaves, so the tree 
structure coding can be stopped one level before the bottom 
level. Fig. 2 demonstrates the tree and the resulting code of 
the example in Fig. 1. 
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Fig. 1. 
Bottom-up procedure. 

Quadtree decomposition procedures. (a) Top-down procedure. (b) 

(b) 

Fig. 2. 
(b) The resulting tree; tree code: QTC = 1 - 0011 - 0001 0011. 

The quadtree and the corresponding code. (a) Subimage coding order. 

So far, the general conventions have been briefly explained. 
Now more specific parts of the QT algorithm will be described. 
Suppose the image size is 2" x 2"; it can then be represented 
at n + 1 levels of resolution. Every pixel at every resolution 
level has its own intensity level. The parent node intensity 
is a mean value of its children nodes intensities, and the test 
examines the error of this representation in the property of 
interest. At each level, except the bottom, the node intensity 

Therefore only this test will be referenced. Other tests can be 
analyzed in the same way. Let T be the threshold. The test 
is positive if 

1 n ( z i ( k : I ) - s i - l ( 2 k + j , 2 1 + m )  I<T= True. (2) 
j,m=O 

The standard QT decomposition algorithm can be summa- 
rized as follows. 
Step 1: 
Step 2: 

Let i = 1 ; N  = 2n-1; 
For I C ,  1 = 0 , .  . . , N - 1; 
IF for j ,  m = 0 , 1  all zi-1(2IC + j ,  21 + m) 

are leaves 
calculate z i ( k ,  1) according to ( I )  
perform the test according to (2) 
IF the test is TRUE zi(IC,l) is a leaf, 
ELSE ~ ( k ,  I )  is a node. 

next I C ,  1. 
IF no leaves were produced by Step 2 STOP, 
E L S E N =  : ; i = i + l ; g o t o S t e p 2 .  

The described algorithm has been used in many image 
compression applications, e.g., [ 141-[21]; however, as it will 
be shown in the next section, by a few modifications the 
performance of the algorithm for image compression can be 
significantly improved. 

Step 3: 

111. THE IMPROVED COMPRESSION 
ALGORITHM BASED ON QT DECOMPOSITION 

A. General 

In contrast to most image compression algorithms, the de- 
scribed QT algorithm does not need much computation power. 
However, as mentioned before, the so far poor rate distortion 
performance of the algorithm (for gray-level images) discards 
all its advantages. In addition to the lack of performance, the 
algorithm creates blocking in the reconstructed image. To make 
the algorithm useful, both these problems must be solved. 
The main result of this paper is that R-D performance can be 
improved by optimal threshold adjustment in the homogeneity 
test and by optimal bit allocation for leaves coding. 

For further discussion, the following variables are defined: 
Ni is a number of pixels at level i that did not propagate to 
level i + 1. Define the empirical probability of finding a pixel 
at level i as _ _  

(3) 
is calculated according to 1vi 

Pz = qn-z' 
f o r i  = l , . . . , n ;  

for I C ,  1 = 0, . . . , 2n-z - 1; 
1 1  

where zi denotes the pixel intensity at resolution level i. Now 
the test must be applied. 

Several homogeneity tests have been introduced in the 
literature [20] and more tests can be defined, depending on 
the property of interest in image representation. However, in 
most applications the simple absolute difference test is used. 

The pixel propagation probability to resolution level 0 is 
defined as qo = 1. The empirical propagation probability from 
level a - 1 to level i is defined by a recursive equation 

(4) 

Note that qn = qn-l - p,-l = p,. The compressed tree 
contains Lqt leaves, where, by definitions above 

n 

i=O 
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= Bi 
v = B z  & p = C  

B , - C = T ,  
BI - C = -TI 

AI - BI = TI 

A3 - Bz = Ti 

The uncompressed tree contains nodes, so the tree 
structure code of the complete tree consists of 9 ones. 
During the compression, the propagation from level 0 to level 1 
converts a number of nodes to leaves. The code remains -& -& Aa-81 = -Ti 

bits but includes zeros in it. During further compression, the Aa &4 - & - B I = - T i  

pixel propagation to resolution level i reduces the code length 
by 4n-i+1qi bits. Therefore the compressed tree Contains Nqt 
nodes and leaves that are sufficient tree structure information, 
i.e., Nqt bits must be assigned for the tree structure code, 
where 

Fig. 3. The synthetic subimage that achieves the MSE bound given in 
Lemma 1 .  A, ,  BE, and C are pixel values. Ti is the threshold at level i. 

the correspondent subimage. Therefore, the total MSE of the 
reconstructed image is bounded by 4 * - 1  

3 n n i  
Nqt = - - x 4 n - i + 1 q i .  (6) 

i=l 
MSEqt = piMSEi 5 pi Tj". (9) 

The rate Rqt of the tree structure code, assuming the straight i=l i=l j=1 
forward coding, is given by 

Expressing pi  by qi in (4) and substituting pi in (9) gives 
(7) qt - 4n n n a 

N9t R U-. 

MSEqt = - 4i+l) MSEi 5 C(Qi - 4i+d ET," In the example of Fig. 2, n = 3 and i=l i=l j=1 

P3 = 0; q3 = q2 - p2 = 0 
Level n + 1 does not exist, so qn+l = 0. Therefore, the total 
MSE is bounded by 

3 5 1 n 

64 - 1 1 i=l 
16 16 2 MSE,t 5 qiTf. (11) 

L q t = 6 4 ~  - + 1 6 ~  - + 4 ~  -=19;  

Nqt = - - 1 6 ~ - = 2 1 - 8 = 1 3 ;  
2 

The goal is to choose threshold values {Ti} that minimize 
the MSE under a constraint of a fixed number of leaves. 
However, the relation between the threshold values and the 
MSE is complicated and cannot be expressed in a closed form. 

13 
qt - 64 

R - - 21 .2[bits/pixel]. 

Thus, we suggest to choose threshold values that minimize the 
MSE bound (11) while the number of leaves is constant or 
equivalently to minimize the number of leaves while the MSE 
bound is constant. By substituting (4) in (5) and writing the 
summation explicity, the expression for Lqt becomes 

Although this rate may be reduced further by a proper coding, 
this coding is not really required, since, as evident from the 
example, this rate is small (would be about 10% - 20% of 
the total rate). 

B. How to Choose the Threshold 

To improve the algorithm performance it is first suggested 
to use different threshold values at each resolution level. The 
procedure to determine the threshold values will be described 
below. Let Ti denote the threshold value at level i .  

Lemma 1: The mean-square error (MSE) of the subimage 
representation by a leaf at QT level i is upper bounded by: 

n 

Lqt = 4"(1 - 41) + 4n-i(qi - %+l) 

1 - q 1 + ! L 4 2 + 4 2  - . . .  
4 4 16 

4"-1 4n-1+ 4") 

i=l 

qn-1 qn qn . . .+--- 

2 

MSEi 5 Tj". 
j=1 

The proof of Lemma 1 is given in the appendix. As a universal 
bound it is sharp, since, as shown in Fig. 3, a subimage that 
achieves the bound can be synthesized. 

The whole image is represented by a number of leaves 
at different levels, where each leaf is a representation of 

Then 

4 
3 

n 

q1 = - ( 1 -  4-"Lqt) - c 4 1 - z q i .  
i=2 
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The expression for q1 substituted in (1 1) gives 

11 

each level is an independent source; then according to (1 8) the 
R-D function of the every source is bounded by 

The first term of (14) is always positive and if L,t is given, the 
term depends only on TI .  Suppose that TI is a given parameter. 

minimized. The second term is not positive if 

for the total leaves rate 

Then, if the second term is minimized, the MSE bound is also E 4-zp, - 1 log L P ( r )  5 R ( D )  
2 D, 2=0 

2 5 i 5 n Ti 5 21-iT1. (15) = epi+ 5 f y P 2 - l O ! g -  1 0; (20) 
2 Di 

2 = 0  
4 

i=0 
Obviously, one can claim that there exists some set of numbers 
Y E { E ; . € ;  E [O; 1]}7=2 such that where we recall that Pi(.) is the entropy power of the random 

variable z corresponding to the intensity at level i and U' is 
its variance. The distortion due to quantization is 2 5 i 5 rL T, = 2'-i~iT1 

n 

The probability qL depends on T, and on the image statistics. 
Thus, each image gives different Y. Furthermore, to find such 
T for every image can be very expensive in calculations. 
Therefore, a suboptimal but universal solution (e.g., solution 
that holds for any image no matter what its statistic is) is 

Now, let us find a set of D,'s that minimizes the upper bound 
in (20), while D is constant and (21) is a constraint. The 
differentiation of the upper bound in (20) with a Lagrange 
multiplier gives 

4"-'D 
(22) given by D ,  = -. 

L,t 
( I7)  The minimization of the lower bound in (20) with the same 2 5 z 5 n T, = 2'-'T1. 

constraint (21) gives the same solution (22). Both, the upper 
and the lower bounds of the R-D function reach their minimum 
at the same point. Thus, it is a good reason to believe that the 
function itself reaches the minimum at or near this point. 

This is the procedure we suggest for threshold selection. It 
depends on an arbitrary parameter TI that can control the 
R-D tradeoff. At each level the threshold is a factor of 2 
smaller than its value at the previous level. A simple "intuitive" 
explanation can be given to this result. The contribution of the Finally, the near to optimal bit allocation is - 

(23) 
image area representation by a leaf at level i to total distortion 1 &,t 

B - -log 4'L-"D , - 2  is proportional to the size of the area (4')). The best MSE is 
achieved if the distortion is distributed uniformly between all 
leaves. Thus, at the higher levels, lower distortion is allowable. 

C. Bit Allocution 

and the leaves rate is 
n 

(24) RB = C4-'p,B,. 
1=0 

So far only distortion due to QT decomposition has been 
referenced. The additional distortion is created by quantizing 
the pixel value of the various leaves; the aim of this section 
is to show how to minimize this distortion by optimal bit 
allocation. R-D theory provides good solutions to the problem 
of optimal bit allocation for an independent vector source [6].  
Each resolution level can be handled as an independent source, 
but in fact all levels, except the bottom, are some combination 
of the previous level, so better performance can be achieved 
if the dependencies are taken into account. 

The rate distortion function of a source (a random variable), 
denoted R ( D ) ,  is bounded [1]-[3] by 

D. Summary: The Improved Algorithm for Image Compression 

We now summarize the proposed modifications, and intro- 
duce the improved algorithm. The homogeneity test of (2) is 
modified to 

/ n I xL(k. 1 )  - x L - ' ( z k  + . I .  21 + 171) 15 T, = True. (2s) 
j .m=O 

The new image compression algorithm via QT decomposition 
is as follows 
Step 1: 
Step 2: 

Choose Tl. Let i = 1: N = a"-'; 
For k .  1 = 0 . .  . . . N - 1: 

1 P  1 2 
2 D -  2 0  

IF for . I ,  m = 0.1 all 2,-1(2IC + j ,  21 + m) 
are leaves R L ( D )  -log - < R ( D )  5 -log - (18) 

calculate z,(IC, 1) according to ( 1 )  
perform the test according to (2.5) 
IF the test is TRUE z,(k.  1 )  is a leaf, 
ELSE z , ( k .  1) is a node. 

where log is the R-D function of the Gaussian source with 
the same varience 0' as the given source and R t ( D )  is the 
K-D function of the Gaussian source with the same entropy. 
P in (18) denotes the entropy power of the source. Suppose next I C .  1. 
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b) - 
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. I  

. I  , I  
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Step 3: IF no leaves were produced by Step 2 
goto Step 4, 

ELSE N = $ ; i  = i + 1 ; ~ ~  = +; goto Step 2. 
Step 4: 

Step 5: 

Step 6: 
Step 7: 
Step 8: 
Step 9: 

Code the tree structure information as 
it was described in Section 2. 

Calculate Lqt; Choose a desired distortion 
level D for leaves quantization; i = 0; 

Calculate leaves mean mi and variance CT:. 
Allocate bits for level i leaves according to (23). 
Quantize level i leaves. 
i = i + 1; IF i > n STOP, 
ELSE goto Step 6. 

In this work the Lloyd-Max quantizer [4], [5], designed for a 
Gaussian distribution, was chosen for the quantization in Step 
8. The overhead information includes means and variances of 
all levels. The total rate is given by 

RT (Dqt + D) Rqt + RB ( D )  (26) 

and the total distortion is upper bounded 

D T ( R T )  5 MSEqt + D. (27) 

IV. EXAMPLE: AN AUTOREGRESSIVE GAUSSIAN FIELD 

In this section we assume a specific source statistics, and 
compare the performance of the proposed improved algorithm 
to the original QT compression algorithm. If the image statistic 
is known, in several cases the R-D performance of the original 
algorithm can be calculated explicitly as described in [21]. We 
follow the technique in [21] to get the performance of the 
improved algorithm, as shown bellow. 

Specifically, we calculate the R-D performance for the case 
where the image is supposed to be a 2-D autoregressive Gauss- 
ian field with zero mean and the following autocorrelation 
function 

where d is the correlation distance. The correlation factor 
between two adjacent pixels is given by 

The autocorrelation function can be expressed in the following 
matrix form 

/)2" - 1 1 p p2 . . .  
p p 2  p3 . . .  

R =  g 2  p2 p3 p4 . . .  p2 p! +1 1. (30) 
. . .  . . .  . .  

i i  p2"-1 . . . . . . . . . p 2 ( 2 " - l )  

Without loss of generality the variance CT' is chosen equal to 
unity. The correlation factor p varies for real gray-level images 
in the range of 0.9-0.99. The R-D performance is calculated 
for: 

1) Original quadtree decomposition algorithm. 
2) Quadtree decomposition with the logarithmic threshold 

of (17). 

2.5 a) - - 
b) - 
C) ... 

3) Original quadtree decomposition algorithm. The optimal 
bit allocation of (23) is performed. 

4) Quadtree decomposition with the logarithmic threshold 
of (17). The optimal bit allocation of (23) is performed. 

The threshold TI and the correlation factor p are given param- 
eters, the resulting R-D functions are shown in Figs. 4-6. The 
examination of these graphs leads to a number of conclusions. 
First, the proposed bit allocation significantly improves the R- 
D performance of the compression for either the constant or the 
logarithmic threshold assignment. Second, the R-D function 
of the algorithm with the logarithmic threshold assignment 
intersects with the R-D function of the original algorithm. 
Before the intersection, the first algorithm performs better; 
after the intersection, the second. However the intersection 
occurs above the distortion range that is allowable for a 
good image compression algorithm. Therefore the proposed 
threshold assignment improves the R-D performance in the 
interesting region. It should be noted that if the threshold TI 
is low, then most of the pixels do not propagate to levels higher 
than 1. Thus, if TI is low, the performance does not depend 
on how the threshold for the next level is chosen. 

v. SIMULATION RESULTS FOR TEST (BENCHMARK) IMAGES 

A. Distortion Measure 

Before presenting the simulation results let us define the 
distortion measure. Different measures have been used by 
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Fig. 5. R-D functions for the autoregressive Gaussian field. p = .95 Fig. 6.  R-D functions for the autoregressive Gaussian field. p = .90 

different researchers. For comparison purpose to other reported 
work, we use the measure peak signal-to-noise ratio (PSNR) 
defined as follows: let ~ ( z ,  j )  be a pixel at the i ,  j coordinates 
of the source image and let y ( i , j )  be a pixel at the i , j  
coordinates of the reconstructed image. The image size is 
2n x Z n  pixels and 8 bivpixel. 

B. Reconstruction Filter 

So far in this work, only the compression procedure was 
of interest. However, an important part of the algorithm 
is the reconstruction procedure, which may influence the 
reconstructed image quality that is not measured directly by 
SNR value. The goal of the reconstruction procedure is to 
expand each tree leaf at some level i to a number of leaves 
at level 0. The reconstruction filter is chosen to be of the 
following form 

and the reconstruction of a pixel at resolution level i - 1 is 
done according to 

for m,n = 0 , l  

2 , _ 1 ( 2 k  + m, 21 + n) = R,FR,X,(k,l) (33) 

where 

5 , ( k  - 1,1 - 1) X , ( k  - 1, I )  .c,(k - 1, I + 1) 

The reconstruction filter is designed to reduce the blocking in 
the reconstructed image. The best way to test if the blocking 
exists is by a visual test. In the results reported below, the 
filter coefficients are taken from [19]. 

C. Results 

The proposed compression algorithm is tested on two real 
gray-level images. The size of the source pictures is 256 x 256 
and they are are shown in Fig. 8. 

In the graph of Fig. 7, the R-D functions for "Lena" of four 
different quadtree based compression algorithms are plotted 
(the reported rate includes the overhead information, which 
is about 10% of the given value). The R-D function of the 
proposed algorithm is more than 5 db above the R-D function 
of the original algorithm. Table I compares PSNR values of 
two quadtree coders for test images at several rates. 

These results make obvious the fact that the proposed 
changes lead to significant performance improvement in the 
compression algorithm based on quadtree decomposition. 
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TABLE I 
COMPARISON OF Two QUADTREE CODERS AT SEVERAL RATES 

“Lena” “Tree“ 

Rate Old QT Alg. New QT Alg. Old QT Alg. New Qt Alg. 

0.5 23.08 28.91 20.34 25.34 
0.67 24.21 30.36 21.75 26.95 
1 .o 27.18 32.55 24.42 29.36 

--original 2.0 32.29 37.19 29.57 33.87 

- logarithmic mnshold. 

... opt bit auccdlion. 
TABLE I1 

PSNR’ VALUES FOR SEVERAL CODERS AT rate = 0.5 bitlpixel 
0.5 1.5 2.5 

15 

bi*d Transform Subband 

Fig. 7. R-D function for ‘‘Lena,’’ Image QT SQ PVQ AWPVQ FSVQ SQ PVQ 

Fig. 8. Test pictures. (a) “Lena.” (b) “Tree.” 

Next, it is interesting to ask: whether the proposed improved 
algorithm is competitive with other compression techniques, 
e.g., DCT-based techniques. To answer this question the 
algorithm performance is compared with several popular tech- 
niques that are described in [22]. The comparison results are 
shown in Tables I1 and 111, and indicate that the proposed 
algorithm performance is much better than popular trans- 
form coding with scalar quantization and is competitive with 
subband coding with scalar quantization within the bands. 
Furthermore, for some images (like “Lena”) the proposed 
algorithm is competitive with transform or subband coding 
with vector quantization. Finally, the resulting images at 
different compression rates are shown in Figs. 9 and 10. 

VI. CONCLUSION 
A practical and efficient image compression algorithm is 

proposed in this paper. This algorithm is based on quadtree 
decomposition and has all its advantages. On the other hand, 
it does not suffer from the poor R-D performance of standard 
QT-based algorithms and its performance is even superior to 
DCT-based compression algorithms with scalar quantization 
and competitive with DCT-algorithms with vector quantiza- 
tion. Thus the proposed algorithm is attractive for a variety 
of applications. The fact that the compression output is useful 
for image segmentation, edge enhancement and pattern recog- 
nition adds to the attractiveness of the algorithm. It is worth 
mentioning that other improvements of the quadtree decompo- 

“Lena” 28.91 24.87 27.62 28.41 29.91 26.55 28.37 
“Tree” 25.38 23.37 26.05 26.67 27.99 26.27 27.13 

‘All PSNR values for transform and subband coders are according to M. E. Blain and 
T. R. Fischer [22]. Abbreviations are: Q T  quadtree coder; SQ: scalar quantizer; PVQ: 
pyramid vector quantizer; AWPVQ: adaptive weighted PVQ; FSVQ: full-search vector 
quantizer: DPCM: differential pulse code modulation: ADPCM: adaptive DPCM. 

TABLE I11 
PSNR’VALUES FOR “Lena” IMAGE AT DIFFERENT RATES 

Subband Transform 

Rate QT SQ PVQ AWPVQ SQ PVQ DPCMADPCM 

0.5 28.91 24.87 27.62 28.41 26.598.37 - - 

0.67 30.36 25.97 28.66 29.93 27.1E9.48 29.4 30.9 
1.0 32.55 27.07 31.67 32.2 28.1S1.37 31.4 32.5 
2.0 37.19 30.67 36.66 - 31.236.65 35.4 36.6 

‘All PSNR values for transform and subband coders are according to M. E. Blain and 
T. R. Fischer [22]. Abbreviations are: Q T  quadtree coder; SQ: scalar quantizer; PVQ: 
pyramid vector quantizer: AWPVQ: adaptive weighted PVQ: FSVQ: full-search vector 
quantizer; DPCM: differential pulse code modulation; ADPCM: adaptive DPCM. 

sition have been suggested [13], [14]. We note, however, that 
our modifications can be incorporated with these algorithms 
as well. For example, our thresholding and bit allocation 
techniques can be applied to the “dual-domain’’ coders de- 
scribed in [ 141 and further improve their performance. Finally, 
the quadtree decomposition has close relations to Pyramid 
and Wavelet decomposition. The proposed modifications can 
be used in image compression algorithms based on these 
decompositions as well. 

APPENDIX 

The proof is by induction. Let us 
start from level 1. According to the test (2) MSEl can be 
represented as 

Proof of Lemma I :  

where I crl(i) 15 1 and crl(i) = 0. In the worst case 
I a l ( i )  I = 1, then MSEl = T;. Now, let us proceed to the 
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Fig. 9. 
bidpixel, 30.36 dB. (c) 1.0 bidpixel, 32.55 dB. (d) 2.0 bidpixel, 37.19 dB. 

Image “Lena” at several rates. (a) 0.5 bidpixel, 28.91 dB. (b) 0.67 

Fig. 10. 
bit/pixel, 26.95 dB. (c) 1.0 bidpixel, 29.36 dB. (d) 2.0 bidpixel, 33.8 dB. 

Image “Tree” at several rates. (a) 0.5 bit/pixel, 25.34 dB. (b) 0.67 

next level 

where I a2(4 5 1. I a l ( i , , j )  15 1 and Etxl a2(i)  = 

E:=, a1 ( i .  j )  = 0. After a few simple operations. Equation 
(36) becomes 

4 3 4  

Again, in the worst case 1 n;l(i) 1 = I a l ( i , j )  I = 1, then 
MSE2 = T;+T;. Suppose that the relation MSE, 5 E:=, T: 
holds for the first k - 1 levels. Now, let us prove that the 
relation holds for level k .  The equation for the MSE at level 
k is 

where I c t k ( i )  15 1 and x:=lak(z) = 0. E k - l ( i , j )  denotes 
the difference between the pixel at level k - 1 and the 
corresponding pixel at level 0. It is easy to show that: 

‘$k - I 
Ek- l ( i , j )  = 0 and E,=, Ei-l(z,j) = MSElc-l(i). 

Equation (38) can be rewritten as 

l 4  l 4  
= - a:(i)T: + - MSEk-l(i). 

z=1 4 
z = l  

4 

In the worst case 1 a k ( , i )  1 = 1 and MSEk-1 = T; + T; + 
. . . + Tl-l. Thus, 

Q.E.D. 

REFERENCES 

[ I ]  R. G. Gallager, Informution Theory and Reliable Communications. 
New York: Wiley, 1968. 

121 T. Berger, Rate Distortion Theory: A Mathematical Basis ,for Data 
Compressions. 

[3] A. J. Viterby and J. K.  Omura, Principles qfDigita1 Communication and 
Coding. New York: McGraw-Hill, 1979. 

[4] S. P. Lloyd, “Least squares quantization in PCM,” Bell Labs Tech. Note 
(1957) (Honorary publication in the IEEE Trans. Inform. Theory, vol. 

[ 5 ]  J. Max, “Quantizing for minimum distortion,” IRE Trans. Inform. 
Theory, vol. 6, 1960. 

[6] A. Segal, “Bit allocation and encoding for vector sources,” IEEE Trans. 
Inform. Theory, vol. IT-22, no. 2, Mar. 1976. 

[7] S. L. Tanimoto and T. Pavlidis, “A hierarchical data structure for picture 
processing,” Comput. Graphics, linage Processing, vol. 4, 1975. 

Englewood Cliffs, NJ: Prentice-Hill, 197 1, 

IT-28, pp. 129-137, Mar. 1982). 



SHUSTERMAN AND FEDER: IMAGE COMPRESSION VIA IMPROVED QUADTREE DECOMPOSITION ALGORITHMS 215 

[8] A. Klinger and C. R. Dyer, “Experiments on picture representation using 
regular decomposition,” Computer Graphics, Image Processing, vol. 5 ,  
1976. 

[9] Y. I. Grosky and R. Jain, “Optimal quadtrees for image segments,” IEEE 
Trans. Pattem Anal. Machine Intell., vol. PAMI-5, 1983. 

[ lo] Y. Cohen, M. S. Landy, and M. Pavel, “A hierarchical coding of binary 
images,” IEEE Trans. Pattem Anal. Machine Intell., vol. PAMI-7, 1985. 

[ l l ]  C. H. Chien and J. K. Agganval, “A normalized quadtree representa- 
tion,” Comput. Vision, Graphics, Image Processing, vol. 26, 1984. 

1121 H. Samet and M. Tamminen, “Computing geometric properties of 
images represented by linear quadtrees,” IEEE Trans. Patrem Anal. 
Machine Intell., vol. PAMI-7, no. 2, 1985. 

[131 P. M. Farrelle, Recursive Block Coding for Image Data Compression. 
New York: Springer-Verlag. 1990, ch. 6, 7. 

1141 R. Wilson, “Quad-tree predictive coding: a new class of image data 
compression algorithms,” in Proc. Int. Con5 Acoust., Speech, Signal 
Processing, 1984, pp. 29.3.1-29.3.4. 

[151 C. A. Shaffer and H. Samet, “Optimal quadtree construction algorithms,” 
Comput. Vision, Graphics, Image Processing, vol. 37, 1987. 

[ 161 A. Hunter and P. Willis, “Classification of quad-encoding techniques,” 
Comput. Graphics Forum, vol. 10, 1991. 

[171 P. Strobach, “Quadtree-structured interframe coding of HDTV se- 
quences,” in Proc. SPIE Int. ConJ Visual Commun., Image Processing 
(Cambridge, MA), Nov. 1988. 

[ 181 P. Strobach, “Quadtree-structured linear prediction models for image 
sequence processing,” IEEE Trans. Pattern Anal.,, Machine Intell., vol. 
11, no. 7, July 1989. 

[19] P. Strobach, “Tree-structured scene adaptive coder,” IEEE Trans. Com- 
mun., vol. 38, no. 4, Apr. 1990. 

[20] P. Strobach, “Image coding based on quadtree-structured recursive least- 
squares approximation,” in Proc. Inc. Con$ Acoust., Speech, Signal 
Processing, 1989. 

[21] P. Strobach, “A computation of quadtree rate distortion functions,” IEEE 
Trans. Inform. Theory. to be published. 

[22] M. E. Blain and T. R. Fischer, “A comparison of VQ techniques,” 
EURASIP Image Commun., vol. 3, no. 1, Feb. 1991. 

E. Shusterman received the B.Sc. and M.Sc. de- 
grees in electncal engineermg (cum laude) from 
Tel-Aviv University, Tel-Aviv, Israel, in 1983 and 
1988, respectively. He is currently working toward 
the Ph.D. degree in electncal engineering. 

From 1983 to 1988, he was with the Israeli 
Aircraft Industly as an Electronics Design Engineer. 
From 1988 to 1990, he was with Dazix Systems, 
Israel. His research interests include image compres- 
sion and signal processing. 

M. Feder (S’85-M’87) received the B.Sc. and 
M.Sc. degrees (summa cum laude) from Tel-Aviv 
University, Tel-Aviv, Israel, and the Sc.D. degree 
from the Massachusetts Institute of Technology, 
Cambridge, and the Woods Hole Oceanographic In- 
stitution (WHOI), Woods Hole, MA, all in electrical 
engineering, in 1980, 1984, and 1987, respectively. 

During 1987-1988, he was a Research Associate 
and Lecturer in the Department of Electrical Engi- 
neering and Computer Science at M.1.T He then 
was with Elbit Computers, Haifa, Israel, in signal 

processing and image compression. In October 1989, he joined the faculty of 
the Department of Elecmcal Engineering-Systems, Tel-Aviv University. He 
was also a Visiting and Guest Investigator at WHO1 in the summers of 1983 
and 1988-1991, and a Visiting Scientist at Scripps Institute of Oceanography, 
University of California-San Diego, in the summer of 1992. His research 
interests include data and signal compression, topics in information theory, 
signal and image processing, and sonar signal processing. Since June 1993 he 
has been an Associate Editor for Source Coding for the IEEE TRANSACTIONS 
ON INFORMATION THEORY. 


